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ABSTRACT 

We present simple characterizations of the sets E~ and Ex of measure 

entropy pairs and topological entropy pairs of a topological dynamical 

system (X, T) with invariant probability measure #. This characteriza- 

tion is used to show that the set of (measure) entropy pairs of a product 

system coincides with the product of the sets of (measure) entropy pairs of 

the component systems; in particular it follows that the product of u.p.e. 

systems (topological K-systems) is also u.p.e. Another application is to 

show that the proximal relation P forms a residual subset of the set Ex. 

Finally an example of a minimal point distal dynamical system is con- 

structed for which Ex n (X0 x X0) ¢ 0, where X0 is the dense G6 subset 
of distal points in X. 

In t roduc t ion  

The theories of measurable dynamics (ergodic theory) and topological dynamics 

exhibit a remarkable parallelism. With the right translation of basic notions one 

often obtains similar theorems in both theories, though the methods of proof 

may be very different. Thus we usually interpret 'ergodicity' as 'topological 

transitivity', 'weak mixing' as 'topological weak mixing' and 'mixing' as 'topo- 

logical mixing'. What is then the topological analogue of being a K-system? 

In his 1992 paper [B,1] F. Blanchard introduced a successful notion of 'topo- 

logical K-systeni' which he called a u.p.e, system. This is defined as follows. 

A topological dynamical system (X, T) (i.e. X is a compact metric space and 
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T a homeomorphism of X onto itself) is called a u n i f o r m  posi t ive  e n t r o p y  

(u.p.e .)  s y s t e m  if every open cover of X by two non-dense open sets U and 

V has positive topological entropy. This naturally led to the following definition 

[B,2]: A pair (x, x ~) E X x X, x ¢ x' is an e n t r o p y  pair  if for every open cover 

/4 = {U, V} of X with x E interior(U c) and x' E interior(V c) the topological 

entropy h(/d, T) is positive. Thus the system (X, T) is u.p.e, iff every pair of dis- 

tinct points in X is an entropy pair. The set of entropy pairs in X x X is denoted 

by E = Ex. From its definition it follows that E~ = Ex U A (where A is the 

diagonal subset of X x X) is a T x T closed symmetric and reflexive relation. Is 

it also transitive? When the answer to this latter question is affirmative then the 

quotient system X/E* X is the topological analogue of the Pinsker factor. Unfor- 

tunately this need not always be true even when (X, T) is a minimal system (see 

[GW,3] for a counter example). The shift system on {0, 1} z and some related 

systems were shown to be u.p.e, systems but it was not clear how big the class of 

u.p.e, systems is. In particular Blanchard asked whether minimal u.p.e, exist. In 

[GW,2] it was shown that  if X supports an invariant measure # for which the 

measure theoretical system (X, #, T) is K, then (X, T) is u.p.e. Using the Jewett-  

Krieger theorem about the realization of every ergodic system as a uniquely er- 

godic one, we can now obtain a great variety of minimal u.p.e, systems. 

Given a T invariant probability measure # on X, a pair (x, x ~) E X x X, x ~ x ~ 

is called a # -en t ropy  pair  if for every Borel partition J: = {F1, F:} of X with 

x E interiorF1 and x ~ E interiorF2 the measure entropy h~,(.T',T) is positive. 

This definition was introduced in [BHM] and it was shown there that  for every 

invariant probability measure # the set E~ of #-entropy pairs is contained in Ex. 
Since for a K-measure # clearly every pair of distinct points is in E~ the result 

of [GW, 2] follows. It was also shown in [BHM] that  when (X, T) is uniquely 

ergodic the converse is also true: Ex -- E~ for the unique invariant measure 

# on X. In order to develop a more general relation between measure entropy 

pairs and topological entropy pairs it was soon realized that what one needs is 

a strong form of the variational principle relating the topological entropy of a 

given open cover/4 with the measure entropy (for a suitable measure #) of Borel 

partitions • finer than/~,  Such a variational principle was proved in [BGH] and 

the following facts about entropy pairs were deduced. We let MT(X) be the 

set of T-invariant probability measures on X and M~.(X) the subset of ergodic 

measures in MT(X). 
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(1) There exists a measure # E MT(X) with E~, = E. 

(2) E -- closureU{E~ : # e M~(X)}.  

However, some questions concerning the nature of the sets E x  and E~ still 

remained open. Perhaps the most vexing one was the question whether the 

product of two u.p.e, systems is also u.p.e. 

Theorem 1 below--whose easy proof, based on a lemma from [BHM], will be 

given in section 1--gives a characterization of E~ which clarifies the nature of 

entropy pairs and enables us to answer many of the problems which were left 

open, including the question about the product of u.p.e, systems. 

Let (X, T, #) -5, (Z, T, v) be the measure theoretical Pinsker factor of (X, T, #), 

and let # = f z  #~ dr(z) be the disintegration of # over (Z, v). Set 

A = f z (# z  x #~)dr(z), 

the independent product of # with itself over v. Finally let A~, = Supp(A) be the 

topological support of A. 

THEOREM 1: 

(1) For a measure # 6 MT(X)  of positive entropy E;~ = A .  \ A. 

(2) When # is also ergodic E,. = A.. 

(3) For a system (X, T) with positive topological entropy there exists a measure 

# 6 MT(X)  with E x  = A .  \ A and 

(4) /~x = closureU{A~ : # e M~(X)}.  

The following result adds to the representation theorems given in [GW,2]. 

THEOREM 2: 

(1) Let (X, T) be a topological dynamicalsystem such that for some T-invariant 

measure # with positive entropy and topological support X ,  the Pinker 

factor map (X,T ,# )  -5, ( X , T , # )  can be realized as a continuous homo- 

morphism o£ topological systems. Then in this realization E~ = R,~ = 

{(x, x ' ) :  It(x) -- lr(x')}, i.e. ~r is a u.p.e, extension (see [GW,3]). 

(2) Let (12, ~,  m, S) be an ergodic measure preserving dynamical system and 

let 

(,) 



16 E. GLASNER Isr. J. Math. 

be its Pinsker factor. Then there exist strictly ergodic topological dynam- 

ical systems (X, #, T) and ()(, fi, ~') and a continuous homomorphism 

(**) (X,~,,T) -5 (2,~,~) 

such that the diagrams (*) and (**) are measure theoretically isomorphic 

and such that E ,  = R~, so that the extension zr is a u.p.e, extension. 

Proo~ The first statement follows directly from Theorem 1 and the second is 

obtained by applying Weiss' relative version of the Jewett-Krieger theorem, [W], 

to (*). II 

The characterization of measure entropy pairs and the fact that  the Pinsker 

algebra of a product system coincides with the product of the Pinsker algebras 

of the components (see e.g. [P]) yield the following theorem. I am indebted to 

B. Weiss for pointing out this application of Theorem 1 and to Y. Lacroix for a 

helpful remark. The proof will be given in section 1 below. 

We let (Ex)  and (E~,> be the closed invariant equivalence relations generated by 

E x  and E~, respectively. Thus the quotient systems Xp = X /  (Ex)  and Xp(#)  = 

X/(E~)  are the topologica l  P inske r  fac tor  (see [BL]) and topologica l  #- 

P i n s k e r  f ac to r  of (X, T), respectively. For a measure # 6 MT(X)  we let S(#) -- 

Supp(#), $2(#) = { ( x , x ) : x  • S(#)} and Xm = closureU{S(#): # • MT(X)} .  

There is always a measure/z • MT(X)  for which S(#) = Xm. Notice that  for a 

measure # • MT(X)  with zero entropy Au = $2(#). Also note that  A u N Ax  = 

s~(~). 

THEOREM 3: Let (X1, T) and (X2, T) be two topological systems, #i • MT(Xi),  

i = 1,2 invariant probabilities with positive entropy. Then 

(1) Amx,~ = A m x A~,~, whence Amx~, 2 = A~I x A~2. 

(2) Em x~, 2 D E m x E~,2, and when #i are ergodic 

E ,  l x , .  , = E m  x E t . = U E  m X $2(/A2)US2(~l)x E~.=. 

(4) (xl x x 2 ) v ( , l  x ,5) = (xl)e(u.) x (x2)v( ,2) .  

If  l~1 has positive entropy and #2 zero entropy, then 

(5) Era×,2 = E.I X S2(/~2). 
I ! (6) (x l  × x2)p( .~  × .2) = (z~ × x 2 ) / ~ ,  where (~,~2)  ~ ( ~ , ~ )  ig 

(xl,x'l) • (Era) and x2 = x'2 • S(#2). 
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/iV (X1, T) and (X2, T) have positive topological entropy, then 

(7) P xl×x  = P xl x 

(8) (Xl x X )p = (Xl)p  x 

/iv (X1, T) has positive topological entropy and (X2, T) has zero topological 

entropy, then 

(9) E,x, xx~ =/~x ,  x {(x,x) :x  • (X2).~}. 

(10) (X1 x X2)p = (X1 x X 2 ) / ~ ,  where (Xl, X2) ~" (X i, Xr2)ill(X1, Xtl) • <Ex1) 

and x2 = • (X2)m. 

(11) The product of two u.p.e, systems is u.p.e. 

It is well known that distal dynamical systems have zero topological entropy. 

On the other hand, one can easily construct examples of point distal minimal 

dynamical systems (PDS) of positive entropy. (Recall that a minimal dynamical 

system (X, T) is point  distal  if there exists a point Xo E X which is proximal 

only to itself. Such a point is called a distal point  and it turns out that the 

existence of one distal point implies that the subset X0 of distal points in X is a 

dense G~ subset, [E].) 

The simplest examples of PDS with positive entropy are obtained as almost 

1-1 extensions of Kronecker dynamical systems: (X, T) -~ (Z, T). In these exam- 

ples the entropy "resides" in the proximal part of the dynamical system (X, T). 

In more precise terms: the set of entropy pairs Ex  C X × X is a subset of 

the proximal relation P, which in our case coincides with the relation R o = 

{(x,x') E X x X :  p(x) = p(x')}. In particular for such PDS, EM(X0 x X0) = 0. 

It is now natural to ask whether in a PDS (X, T), always E C P; or whether the 

weaker statement, E N (X0 x Xo) = 0, holds for all PDS. In section 2, I answer 

this latter question--posed to me by J. Auslander--in the negative. 

In the opposite direction the question--again suggested by J. Auslander--is 

whether for a general system (X, T) with positive topological entropy, necessarily 

E N P ~ 0. Since a consequence of an unpublished result of B. Host implies that 

E C 15 (actually E C L, see definition below), and as in all the examples we have 

P is clearly dense in E, this seemed a very plausible conjecture, but for some 

time I could not solve this purely topological problem using topological methods. 

The idea to use measures led to Theorem 1 and to the following easy corollary 

whose proof is given in section 1. 
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THEOREM 4: Let (X,T)  be a topological dynamical system, P the proximal 

relation on X .  Then: 

(1) For every T-invariant ergodic measure # of positive entropy the dynamical 

system (#'t,, T x T) is topologically transitive. 

(2) For every T-invariant ergodic measure # of positive entropy the set PMEg 

is residua/in the (G~) set E ,  o f#  entropy pairs. 

(3) When E # • the set P M E is residual in the (G~) set E of entropy pairs. 

For definitions, notations and results that we use in the sequel, we refer the 

reader to [BHM], [BGH] and [G]. 

1. A characterization of  E,  

Proof of Theorem 1: Let # E MT(X) have positive entropy. Suppose (x,y) 

Eg U A, then there exists a Borel partition P = {Q, QC} with x c interior Q and 

y c interiorQ c and such that hg(P) = 0. This implies that Q is in the Pinsker 

algebra rig, and we have: 

Q°) dr(z) = O. )~( Q × 

Thus (x, y) ~ A. 

Conversely, suppose (x, y) ¢ A U A. Then there exist disjoint open neighbor- 

hoods A and B of x and y respectively with 

0 = %(A x B) = / Vz(A)v.(B) dr(z) 

= / E(1A [rit,)(x) E(1B lri~)(x) d#(x). 

Now as in the proof of proposition 7 in [BHM], this implies the existence of a Borel 

subset Q of X such that A C Q, B c Qc and h,(:P) = 0, where P = {Q, Qc}. 

Thus (x, y) ¢~ Eg. For completeness we reproduce the construction of Q. If 

#(A) = 0 then A E rig and we let Q = A. Otherwise let 

f = {x :  E(1mtn.)(x)  > 0}. 

Clearly F is Hg measurable and for # almost every x E F our assumption implies 

E(1BIH~)(x) = 0. Thus 

, ( F  n B) = E(1FE( l s  In. ) )  = 0, 
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and 

#(A\F) = ~:(1FCE(1A I H , ) )  = 0. 

It follows that  the set Q = A u (F\B) satisfies our claim. This proves the first 

statement of the theorem. 

Since by [BGH], there is always a T-invariant measure # for which E = E , ,  

we can deduce that  also Ex = A~ \ A for an appropriate measure # E MT(X). 

When # is ergodic # has the form v x #1, hence A = u x #1 x #1. If further 

# has positive entropy, then #1 is non-trivial and has no atoms and therefore 

A(A) = 0. It follows that closure(A~ \ A) = A,  and taking closure on both sides 

of the formula in part (1) we g e t / ~  = A~. 

Finally, theorem 4 in [BGH] implies 

/~ = closure U { E ~  : #  ergodic) 

= closure U { h ~  : # ergodic}. 

Given a dynamical system (X, T) and a nonempty subset A C X x X we de- 

note by (A> the smallest invariant closed equivalence relation containing A. An 

explicit description of <A> can be obtained by forming A0 = closure(A U Ax) ,  

then A~ = closure(Un< ~An) where An = A0 o A0 . . .A0  and B o C = 

{ ( x , x ' )  : 3(x ,x ' )  e B, (x ' ,x ' )  e C} and proceeding in an obvious way by (count- 

able) transfinite induction. The staightforward proof of the following lemma is 

left to the reader. 

LEMMA 1.1: Let (Xi ,T) ,  i --- 1,2 be two dynamical systems and 

A C X1 x X1, B C X2 x X2 nonempty subsets, then with the identification 

+ o f  x x x w i t h  

(X 1 X X1) X (X 2 X X2) w e  have: 

(A x B) = (A> x (B). 

Proof of Theorem 3: (1) Let (Xi, #i, T) -~ (Zi, ui, T) be the measure theoretical 

Pinsker factors of (X~, #i, T),  and let #~ = fz,(#~)z dvi(z) be the disintegration 

of #i over (Zi, vi), i -- 1, 2. Set 

i 
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the independent product of #i with itself over ui. Finally let Az~ = Supp(Az~) be 

the topological support of A~. By [P], the Pinsker factor of the product system 

is given by 

(Xl x X2,~l x/~2,T x T) ~1x~5 (Z1 x Z2,v I X v2,T x T). 

Since clearly the disintegration of #l x #2 over Z1 x Z2 is given by 

~1 X ~2 = / / Z  (#l)zl X (#2)z= dUl(Zl)du2(z2), 
1xZ2 

we have 

)~ = f f ( ( ' l )z l  X (#2)z2) X (( '1)zl X (#2)z2) dvx(z1)dt12(z2). 
J Jz  1 xZ2 

Integration in the last formula first with respect to /11 then with respect to 

v2 yields, via the identification map ((xl, x2), (x~, x~)) -+ ((Xx, x~), (x2, x~)) of 

(X 1 x X2) x (X 1 x X2) with (X 1 X Xl)  x (X2 x X2), 

A~,~x~2 = A~I x A~ whence A ~ x ~  = A~ x A~. 

(2)-(3) of Theorem 1 now imply 

E~,I×~ = A ~ x ~  \ Ax~xx~ = A,,~ x A~2 \ Ax~xx2 

D (a~, "- Axe) x (A~2 \ Ax2) = E~I x E~2. 

If in addition the measures #i are e rgod ic , /~  = A~, hence 

A~x~,~ D/~,x~2 D / ~  x / ~  = A~,, x A~,~ = Amx~ 

and 

]~ x~ = ]~ x ]~2. 

Now for the general case; let 

#~ = ~ (#i)~dPi(w) 

be the ergodic decomposition of #i, i = 1, 2. Then 

"1 x "2 : f f (]A1)W X (.2)w'd(Pl x P:)(w,w'). 
J J~ ×fl 
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Since the entropy is an affine function on the space MT(X), we can assume---by 

decomposing fl into two parts according to whether (#i)~ has positive or zero 

entropy-- that  almost every (#i)~ has positive entropy and then by the above we 

have for almost every (w, w') 

.E(,~),.,x(~.,),,,, = ]~(,~)~ x ]~(,~)~,. 

Although the measures  (~tl) w X (~2)w' need not be ergodic one can apply the 

proof of theorem 4 in [BGH] and then this theorem itself (applied to the ergodic 

decomposition of the measures #i) to deduce that  

&,,x.,  = closure(U{E(,,,), x } )=  E., x 

Finally back to the ergodic case, we have/~,,  = A,~ and it follows that  A,~ is 

the disjoint union of E ~  and S2(#i). Thus 

implies 

E#tx#2 = E#, x E#2 UE.~ x $2(#2)U $2(#1) x E~,=. 

(4) Follows from Lemma 1.1 applied to the relations A = / ~  and B = ]~,2- 

(5) Since we now assume that  #2 has entropy zero, we clearly have 

(X1 x X2,#1 x #2,T x T) ~L~ id (Zx x X2, ul x #2,T x T) as the Pinsker factor 

of the product system. The corresponding disintegration of #1 × ~2 over Ul × tt2 

yields 

A,~x#2 = h~l x $2(~2), 

and by Theorem 1 we get 

E . , × . 2  = E . ,  x S2( .~) .  

(6) Follows from (5). 

(7) Choose measures #i E MT(Xi) with E~, = Ex, ,  i = 1, 2. Then from (3) 

we get 

The converse inclusion is clear. 

(8) Follows from Lemma 1.1 applied to the relations A = /~x ,  and B = ]~x2. 
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(9) Follows from (5) if we choose #1 E MT(X1) with E m = ExI  and #2 E 

MT(X2)  with S(#2) = (X2)m. 

(10) Follows from (9). 

(11) This is a special case of (7). | 

Proof of Theorem 4: (1) and (2): Notations are as in Theorem 1. Clearly the 

extension (X, T, #) -~ (Z, T, v) is a weakly mixing extension; i.e. the measure 

A is ergodic. This implies that the topological dynamical system (A, T × T) is 

topologically transitive. Now since the diagonal A ----- {(x, x) : x  E X} intersects 

/~u = A~, it follows that  P \ A  is dense in E~. Since P is always a G~ subset of 

X × X and as E~ itself is a Ga subset, our claim follows. 

(3) By theorem 4 in [BGH], U{E~:  # ergodic} is dense in E. Thus we deduce 

from part (2) that  P N E is dense in E, and the proof is concluded as in part (2). 

I 

2. Dis ta l  points and entropy pairs 

Let (X, T) be a point distal minimal dynamical system, X0 C X the collection 

of distal points in X. Let E = E x  be the set of entropy pairs in X x X, P = Px 

the proximal relation, A = {(x, x) : x E X} the diagonal, and 

L = L x  = {(x,x') E X x X : 5(x,x ')  C P}  

= {(x, x'): A is the unique minimal set in 5(x, x')}. 

We recall that  in any minimal dynamical system the relation L is an equivalence 

relation. Notice that  E C L iff/~ C L. 

LEMMA 2.1 : 

E fq (Xo x Xo) = 0 i f  and only if E C L. 

Proof: I f E  C L then clearly Efq(X0 xXo)  C A, hence E M ( X 0  x X 0 )  = 

0. On the other hand, if E is not contained in L then there exists a minimal 

subset M C/~,  M ~ A and, by Markley's lemma (proposition 3.11 in [J]), • 

M N (Xo x X0) C E n (Xo x Xo). | 

LEMMA 2.2: The property E C L in PDS is preserved for minima/almost  1-1 

extensions as well as for factors. 

Proof: Let (X*,T) --~ ( X , T )  be a minimal almost 1-1 extension of the PDS 

(X, T) for which/~x C L x .  Suppose (x~, x~) E Ex* N (X~ x X~) where X~ = 
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{x* • X* : 7r(x*) = x • Xo and 7r-l(x) = {x*}} is the set of distal points in 

X*. Then (xl,x2) = (lr(x~),Ir(x~)) • E x  N (Xo x Zo) C L x ,  hence xl = x2 

and we have (xI, x~) • L x .  N (X~ x X~) = A, contradicting our assumption 

that  (xl, x~) • E x . .  Thus Ex* cl (X~ x X~) = O and by Lemma 2.1 the proof 

of the first assertion is complete. For the second, we observe that  for a factor 

(X, T) ~ (Y, T) of the PDS (X, T) we have: 

F,y = (Tr x rr)(F,x) C (Tr x 7r)(Lx) C L y .  II 

From now on we deal with a minimal PDS (X, T) having the following struc- 

ture. Let (X, T) -~ (Z, T) be the largest equicontinuous factor of (X, T). We 

assume the existence of a tower (X, T) -~ (Y, T) -~ (Z, T), so that  p = a o ~r, 

where a is an almost 1-1 extension and ~r a group extension with a compact 

group K. Let Zo denote the set {z e Z : la- l (z) l  = 1}, Yo = a - l (Zo )  and 

X0 = ~r-l(Y0); then Xo is the T-invariant residual set of distal points in X. 

LEMMA 2.3: For (X, T)  as above assume further that E C L. Then there exists 

an isomorphism (into) 

- *  x × Y, = 
Z 

f f  a is a u.p.e, extension, i.e. F,y = Y x Y ,  then l~ -1 is onto X x Y and F,x is a 
Z z 

T-invariant dosed equivalence relation. 

Proof." Suppose (x,x'), (x, x") E Ex;  then since L is an equivalence relation, 

(x', x") E L. Since clearly 7r(x') -- ~r(x") and since r is a group extension, we 

must have x' = x". It thus follows that for every x E X ,  y' E Y with p(x) = a(y'),  

there exists at most one x ~ E ~r-l(y ~) with (x, x ~) • Ex .  This observation shows 

that  the map 

j~--i : J~X - - ~ X  x Y ~ 
z 

Z - l ( x , x  ,) = 

is 1-1. It is clearly a dynamical system isomorphism (into). 

If for (x, y') E Z x Y ,  (~r(x), y') C /~v, then there exists (~, ~') E /~x with 
Z 

7r(~) = lr(x) andrr(x ' )  = y'. I f x  = kx (k e g ) , t h e n f o r  x' = k x ' , w e h a v e  

(x, x') E /~x .  Thus, in case/~v = Y x Y, the map ~-1 is onto X x Y. It only 
Z Z 

remains to show that  in that case/~z is an equivalence relation. 
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So suppose (x,x ') , (x ' ,x")  e E,x; then (x,x") e L. Let (x ,x")  = fl(x,~-(x")); 

then (x, x")  e /~x C L and hence also (x", x")  e L. Since r(x") = 7r(~") we 

conclude that  x" = ~" and therefore (x, x')  E Ex.  I 

Remark: One can check now that  when /~x  C L and a is a u.p.e, extension 

(so that  /~x is a T-invariant closed equivalence relation), for W = X / E x ,  the 

natural map W --+ Z is a free K-extension and X ~ W x Y. Moreover, when 
Z 

Z is zero-dimensional--so that every group extension of Z (and also of Y) is a 

cocycle extension--one can show that  if X = Y x K for a cocycle ¢ : Y -+ K 
¢ 

then there exists a cocycle ¢ : Z -+ K which is cohomologous to ¢; i.e. ¢(y) = 

f (Ty) - l¢ (a(y ) ) f (y ) ,  for some f :  Y --+ g .  

The method of construction used in the next proposition is that  of [GW,1]. 

PROPOSITION 2.4: There exists a minimal point distal dynamical system ( X, T) 

(in fact of the form (X, T) -~ (]I, T) -~ (Z, T) above), for which Ex M (Xo x Xo) 

#0. 

Proof: Let (Y, T) be a minimal dynamical system such that the homomorphism 

(]I, T) -~ (Z, T) from (]I, T) to its Kronecker factor (Z, T) is an almost I-1, u.p.e. 

extension (see [GW,3] for the construction of such systems). Let K be the circle 

and put X = Y x K (so that X _5~ y is the projection). With every continuous 

map ¢ : Y --+ K we associate a homeomorphism G¢ of X onto itself given by: 

G¢(y, k) = (y, k ÷ ¢(y)). Let To be the map T x idK: X --+ X and put 

,S = {G~ 1 o To o G¢ :  Y ~¢ g continuous}. 

Note that  every homeomorphism R E S has the form R = T¢~ for some continuous 

¢ : Y -+ K, where 

T~(y, k) = (Ty, k + ¢(y)). 

(The closure operation is taken in the Polish space 7-/(X) of self homeomorphisms 

of X with the topology of uniform convergence of homeomorphisms and their 

inverses.) 

Choose a pair of distinct points Y0, Y~ C Y with a(yo) = a(Y'o) and such that  

(Y0, Y~) is a recurrent point (this is possible in the example mentioned above). 

LEMMA 2.5: The set 

T¢ = {T¢E ,~: 5((yo,O), (y~,0)) D ({Y0} x K) x ({y~} x K)} 
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is residual in S .  

Proof: Given 5 > 0, and an open cover ]C N : { g i } i =  1 of K by open intervals 

with rational endpoints, for 1 _< i, j < N put 

V~i,j = {T¢ • S :  3n T~((yo,O),(y~o,O)) • (B6(y) × Ki)  × (B6(y')  x Kj)}. 

Clearly ])~,i,j is an open subset of S and as 

N VI~#,J CT~' 

our proof will be complete by Baire's theorem--when we show that ~2~,i, j is 

dense in S. For this we only need to show that G¢ 1 o To o G¢ E ])~,i,j; i.e. 

To C GCV~,~,jG~ 1 for every ¢. Now it is easy to see that for suitable 5' and cover 

]C' = {K~}, ~)~'ii,j C G¢]Z~,~,jG¢ 1 and therefore it suffices to show that  To E V~#,j 

for every 5,/~ and i, j .  This will follow from the following: 

CLAIM: Given e > 0, 5 > 0, ~ and i , j  there exists ¢ with 

(1) G ¢  1 o To o e ¢  E ))~#,j. 

(2) d(TO, a ¢  1 o T O o G¢) <~ £. 

P r o o f  o f  Claim: Pick k E Ki ,  k I E K j  and let t --+ kt be any continuous map 

from [0, 1] to K with ko = O, kl /2 = - k ,  kl  = - k  ~. There exists an ~? > 0 such 

that  It - t '  I < ~ implies Ikt - kt, I < e. 

Choose a positive integer n such that  Tnyo E B~(yo) and T'~y~o • B~(y~) (such 

n exist, since (y, y') is recurrent), and also 2 / v ~  < 7. We denote n' = [v/'~. 

Next choose closed neighborhoods V, V ~ of Y0, Y~ respectively so that  the sets 

V, TV,  . . . , Tn+'~'V, V ' ,  T V ' ,  . . . , T n+'e V '  

are pairwise disjoint. We now extend the function 

0, y E T m v  U T r o Y  t for m < n 

0*(y) ---- 1/2, y E T m V f o r n < _ m < n ÷ n  ' 

1, y E T m v  ' for n < m <_ n + n  I 

in an arbitrary way, to a continuous function (still denoted 0") on all of Y and 

into [0, 1]. Now define 
n t -  1 

o(y) = o*(r 'y) ,  
l=O 
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and put ¢(y) = ko(~). Writing down the relevant formula we now see that  

properties (1) and (2) hold for ¢. | 

With this claim our proof of Lemma 2.5 is complete. | 

Note that  since the extension (X, T) 5, (y, T) is distal, it follows that for every 

element T¢ in 7~ the dynamical system (X, T¢) is also minimal. 

We can now complete the proof of Proposition 2.4. In fact we will show that  

for every T¢E 7~, for the dynamical system (X, T¢), E ~ L, so that  by Lemma 

2.1, E n ( X o  x Xo) ¢ O. 

We now fix an element T¢ E TO. Since the pair (yo,Y~o) is in Ev, there exists at 

least one pair (x0, x~) = ((Y0, k), (y~, k')) E Ex.  As/~x is invariant we also have 

6(x0, x~) C /~x .  Since T¢ is in 7¢ we conclude that ({Y0} x K) x ({y~} x K) C /~x .  

This latter fact is not consistent with the conclusion of Lemma 2.3, and we 

therefore conclude that  the assumption E C L of this lemma cannot hold for our 

dynamical system (X, T¢). 1 
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